参考文献

以下是我的 R 進程信息:

## R version 3.6.1 (2019-07-05)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 16.04.6 LTS
## 
## Matrix products: default
## BLAS:   /usr/lib/openblas-base/libblas.so.3
## LAPACK: /usr/lib/libopenblasp-r0.2.18.so
## 
## locale:
##  [1] LC_CTYPE=zh_CN.UTF-8       LC_NUMERIC=C               LC_TIME=ja_JP.UTF-8       
##  [4] LC_COLLATE=en_US.UTF-8     LC_MONETARY=ja_JP.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=ja_JP.UTF-8       LC_NAME=C                  LC_ADDRESS=C              
## [10] LC_TELEPHONE=C             LC_MEASUREMENT=ja_JP.UTF-8 LC_IDENTIFICATION=C       
## 
## attached base packages:
## [1] grid      splines   stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
##  [1] factoextra_1.0.5     FactoMineR_1.42      R2OpenBUGS_3.2-3.2   coda_0.19-3         
##  [5] BRugs_0.9-0          TailRank_3.2.1       oompaBase_3.2.8      codetools_0.2-16    
##  [9] clubSandwich_0.3.5   HLMdiag_0.3.1        LogisticDx_0.2       PBSmodelling_2.68.8 
## [13] ROCR_1.0-7           gplots_3.0.1.1       Hmisc_4.2-0          Formula_1.2-3       
## [17] eha_2.6.0            stargazer_5.2.2      tableone_0.10.0      lmerTest_3.1-0      
## [21] ATE_0.2.0            dagitty_0.2-2        exact2x2_1.6.3       exactci_1.3-3       
## [25] ssanv_1.1            FSA_0.8.25           lmtest_0.9-37        zoo_1.8-6           
## [29] BSDA_1.2.0           lattice_0.20-38      ggthemr_1.1.0        binomTools_1.0-1    
## [33] limma_3.36.5         DescTools_0.99.28    ggsci_2.9            ggthemes_4.2.0      
## [37] car_3.0-3            carData_3.0-2        scatterplot3d_0.3-41 mvtnorm_1.0-11      
## [41] kableExtra_1.1.0     sandwich_2.5-1       nlme_3.1-140         lme4_1.1-21         
## [45] Matrix_1.2-17        psych_1.8.12         margins_0.3.23       epiDisplay_3.5.0.1  
## [49] nnet_7.3-12          MASS_7.3-51.4        foreign_0.8-71       rgl_0.100.26        
## [53] epiR_1.0-2           shiny_1.3.2          epitools_0.5-10      flexsurv_1.1.1      
## [57] mstate_0.2.11        cmprsk_2.2-8         gnm_1.1-0            KMsurv_0.1-5        
## [61] Epi_2.37             gridExtra_2.3        plotly_4.9.0         haven_2.1.1         
## [65] survminer_0.4.4      ggpubr_0.2.1         magrittr_1.5         ggfortify_0.4.7     
## [69] survival_2.44-1.1    forcats_0.4.0        stringr_1.4.0        dplyr_0.8.3         
## [73] purrr_0.3.2          readr_1.3.1          tidyr_0.8.3          tibble_2.1.3        
## [77] ggplot2_3.2.0        tidyverse_1.2.1      plyr_1.8.4           kfigr_1.2           
## [81] knitr_1.23           bookdown_0.12        rmarkdown_1.14      
## 
## loaded via a namespace (and not attached):
##   [1] SparseM_1.77            muhaz_1.2.6.1           oompaData_3.1.1        
##   [4] acepack_1.4.1           multcomp_1.4-10         data.table_1.12.2      
##   [7] rpart_4.1-15            generics_0.0.2          BiocGenerics_0.26.0    
##  [10] cowplot_1.0.0           TH.data_1.0-10          polspline_1.1.15       
##  [13] RLRsim_3.1-3            webshot_0.5.1           xml2_1.2.1             
##  [16] lubridate_1.7.4         httpuv_1.5.1            assertthat_0.2.1       
##  [19] relimp_1.0-5            xfun_0.8                hms_0.5.0              
##  [22] evaluate_0.14           promises_1.0.1          fansi_0.4.0            
##  [25] caTools_1.17.1.2        readxl_1.3.1            km.ci_0.5-2            
##  [28] DBI_1.0.0               htmlwidgets_1.3         ellipsis_0.2.0.1       
##  [31] selectr_0.4-1           crosstalk_1.0.0         backports_1.1.4        
##  [34] V8_2.3                  survey_3.36             aod_1.3.1              
##  [37] vctrs_0.2.0             Biobase_2.40.0          quantreg_5.42.1        
##  [40] abind_1.4-5             withr_2.1.2             checkmate_1.9.4        
##  [43] mnormt_1.5-5            cluster_2.1.0           lazyeval_0.2.2         
##  [46] crayon_1.3.4            labeling_0.3            pkgconfig_2.0.2        
##  [49] rlang_0.4.0             miniUI_0.1.1.1          MatrixModels_0.4-1     
##  [52] modelr_0.1.4            cellranger_1.1.0        tcltk_3.6.1            
##  [55] boot_1.3-23             base64enc_0.1-3         viridisLite_0.3.0      
##  [58] bitops_1.0-6            KernSmooth_2.23-15      pROC_1.15.3            
##  [61] speedglm_0.3-2          manipulateWidget_0.10.0 ggsignif_0.5.0         
##  [64] scales_1.0.0            leaps_3.0               gdata_2.18.0           
##  [67] compiler_3.6.1          RColorBrewer_1.1-2      cli_1.1.0              
##  [70] htmlTable_1.13.1        mgcv_1.8-28             tidyselect_0.2.5       
##  [73] stringi_1.4.3           highr_0.8               mitools_2.4            
##  [76] yaml_2.2.0              ggrepel_0.8.1           latticeExtra_0.6-28    
##  [79] survMisc_0.5.5          manipulate_1.0.1        tools_3.6.1            
##  [82] parallel_3.6.1          rio_0.5.16              rstudioapi_0.10        
##  [85] digest_0.6.20           quadprog_1.5-7          Rcpp_1.0.2             
##  [88] broom_0.5.2             later_0.8.0             httr_1.4.0             
##  [91] qvcalc_1.0.0            colorspace_1.4-1        rvest_0.3.4            
##  [94] XML_3.98-1.20           statmod_1.4.32          expm_0.999-4           
##  [97] etm_1.0.5               xtable_1.8-4            jsonlite_1.6           
## [100] nloptr_1.2.1            flashClust_1.01-2       zeallot_0.1.0          
## [103] R6_2.4.0                pillar_1.4.2            htmltools_0.3.6        
## [106] mime_0.7                prediction_0.3.14       glue_1.3.1             
## [109] minqa_1.2.4             deSolve_1.24            class_7.3-15           
## [112] utf8_1.1.4              numDeriv_2016.8-1.1     curl_4.0               
## [115] BiasedUrn_1.07          gtools_3.8.1            zip_2.0.3              
## [118] openxlsx_4.1.0.1        munsell_0.5.0           e1071_1.7-2            
## [121] labelled_2.2.1          reshape2_1.4.3          gtable_0.3.0           
## [124] rms_5.1-3.1

Abadie, Alberto, and Guido W Imbens. 2016. “Matching on the Estimated Propensity Score.” Econometrica 84 (2): 781–807.

Armitage, Peter, Geoffrey Berry, and John Nigel Scott Matthews. 2008. Statistical Methods in Medical Research. John Wiley & Sons.

Austin, Peter C. 2011. “An Introduction to Propensity Score Methods for Reducing the Effects of Confounding in Observational Studies.” Multivariate Behavioral Research 46 (3): 399–424.

Belle, G. van, L.D. Fisher, P.J. Heagerty, and T. Lumley. 2004. Biostatistics: A Methodology for the Health Sciences. Wiley Series in Probability and Statistics. Wiley. https://books.google.co.uk/books?id=KSh8IOrLPzwC.

Bland, J Martin, and DouglasG Altman. 1986. “Statistical Methods for Assessing Agreement Between Two Methods of Clinical Measurement.” The Lancet 327 (8476): 307–10.

Cattaneo, Matias D. 2010. “Efficient Semiparametric Estimation of Multi-Valued Treatment Effects Under Ignorability.” Journal of Econometrics 155 (2): 138–54.

Cox, David R. 1972. “Models and Life-Tables Regression.” JR Stat. Soc. Ser. B 34: 187–220.

Cox, D.R. 2006. Principles of Statistical Inference. Cambridge University Press. https://books.google.co.jp/books?id=nRgtGZXi2KkC.

Cox, R. T. 1946. “Probability, Frequency and Reasonable Expectation.” American Journal of Physics 14 (1): 1–13. https://doi.org/10.1119/1.1990764.

Dawid, A Philip. 2000. “Causal Inference Without Counterfactuals.” Journal of the American Statistical Association 95 (450): 407–24.

De Finetti, Bruno. 1974. Theory of Probability: A Critical Introductory Treatment. Transl. By Antonio Machi and Adrian Smith. J. Wiley.

Diggle, Peter, and Michael G Kenward. 1994. “Informative Drop-Out in Longitudinal Data Analysis.” Applied Statistics, 49–93.

Diggle, Peter, Rana Moyeed, Barry Rowlingson, and Madeleine Thomson. 2002. “Childhood Malaria in the Gambia: A Case-Study in Model-Based Geostatistics.” Journal of the Royal Statistical Society: Series C (Applied Statistics) 51 (4): 493–506.

Fisher, R. A. 1922. “On the Mathematical Foundations of Theoretical Statistics.” Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character 222: 309–68. http://www.jstor.org/stable/91208.

Gelman, A., J.B. Carlin, H.S. Stern, D.B. Dunson, A. Vehtari, and D.B. Rubin. 2013. Bayesian Data Analysis, Third Edition. Chapman & Hall/Crc Texts in Statistical Science. Taylor & Francis. https://books.google.co.uk/books?id=ZXL6AQAAQBAJ.

Good, P.I. 2006. Permutation, Parametric, and Bootstrap Tests of Hypotheses. Springer Series in Statistics. Springer New York. https://books.google.co.uk/books?id=tQtedCBEgeAC.

Gower, John C. 1971. “A General Coefficient of Similarity and Some of Its Properties.” Biometrics, 857–71.

Hosmer, David W, and Stanley Lemesbow. 1980. “Goodness of Fit Tests for the Multiple Logistic Regression Model.” Communications in Statistics-Theory and Methods 9 (10): 1043–69.

Johnson, Sindhu R, Brian M Feldman, Janet E Pope, and George A Tomlinson. 2009. “Shifting Our Thinking About Uncommon Disease Trials: The Case of Methotrexate in Scleroderma.” The Journal of Rheumatology 36 (2): 323–29.

Laan, Mark J van der, and Sherri Rose. 2017. “Targeted Learning in Data Science.” New York, NY: Springer International Publishing. Doi 10: 978–3.

Lesaffre, E., and A.B. Lawson. 2012. Bayesian Biostatistics. Statistics in Practice. Wiley. https://books.google.co.uk/books?id=WV7KVjEQnJMC.

Mann, Vera, De StavolaBianca L, and David A Leon. 2004. “Separating Within and Between Effects in Family Studies: An Application to the Study of Blood Pressure in Children.” Statistics in Medicine 23 (17): 2745–56.

Neyman, JS. 1923. “On the Application of Probability Theory to Agricultural Experiments. Essay on Principles. Section 9.(Tlanslated and Edited by Dm Dabrowska and Tp Speed, Statistical Science (1990), 5, 465-480).” Annals of Agricultural Sciences 10: 1–51.

Pearl, Judea. 2011. “Invited Commentary: Understanding Bias Amplification.” American Journal of Epidemiology 174 (11): 1223–7.

Pepe, Margaret S, Ziding Feng, Ying Huang, Gary Longton, Ross Prentice, Ian M Thompson, and Yingye Zheng. 2007. “Integrating the Predictiveness of a Marker with Its Performance as a Classifier.” American Journal of Epidemiology 167 (3): 362–68.

Raftery, Adrian E., and Steven Lewis. 1992. “How Many Iterations in the Gibbs Sampler?” In In Bayesian Statistics 4, 763–73. Oxford University Press.

Raudenbush, Stephen W, and Anthony S Bryk. 2002. Hierarchical Linear Models: Applications and Data Analysis Methods. Vol. 1. Sage.

Robinson, Laurence D, and Nicholas P Jewell. 1991. “Some Surprising Results About Covariate Adjustment in Logistic Regression Models.” International Statistical Review, 227–40.

Robinson, W. S. 1950. “Ecological Correlations and the Behavior of Individuals.” American Sociological Review 15 (3): 351–57. http://www.jstor.org/stable/2087176.

Rosenbaum, Paul R, and Donald B Rubin. 1983. “The Central Role of the Propensity Score in Observational Studies for Causal Effects.” Biometrika 70 (1): 41–55.

Royston, Patrick, and Mahesh KB Parmar. 2002. “Flexible Parametric Proportional-Hazards and Proportional-Odds Models for Censored Survival Data, with Application to Prognostic Modelling and Estimation of Treatment Effects.” Statistics in Medicine 21 (15): 2175–97.

Rubin, Donald B. 1974. “Estimating Causal Effects of Treatments in Randomized and Nonrandomized Studies.” Journal of Educational Psychology 66 (5): 688.

Smith, Adrian. 1995. “A Conversation with Dennis Lindley.” Statistical Science 10 (3): 305–19.

Snijders, Tom, and Roel Bosker. 1999. “Multilevel Analysis: An Introduction to Basic and Applied Multilevel Analysis.” London: Sage.

Spiegelhalter, David J, Keith R Abrams, and Jonathan P Myles. 2004. Bayesian Approaches to Clinical Trials and Health-Care Evaluation. Vol. 13. John Wiley & Sons.

Spiegelhalter, David J, Nicola G Best, Bradley P Carlin, and Van Der LindeAngelika. 2002. “Bayesian Measures of Model Complexity and Fit.” Journal of the Royal Statistical Society: Series B (Statistical Methodology) 64 (4): 583–639.

Tinmouth, Alan, Ian F Tannock, Michael Crump, George Tomlinson, Joseph Brandwein, Mark Minden, and David Sutton. 2004. “Low-Dose Prophylactic Platelet Transfusions in Recipients of an Autologous Peripheral Blood Progenitor Cell Transplant and Patients with Acute Leukemia: A Randomized Controlled Trial with a Sequential Bayesian Design.” Transfusion 44 (12): 1711–9.

Verbeke, Geert. 1997. Linear Mixed Models for Longitudinal Data. Springer.

Xie, Yihui. 2015. Dynamic Documents with R and Knitr. 2nd ed. Boca Raton, Florida: Chapman; Hall/CRC. http://yihui.name/knitr/.

———. 2018. Bookdown: Authoring Books and Technical Documents with R Markdown. https://CRAN.R-project.org/package=bookdown.