参考文献

以下是我的 R 進程信息:

sessionInfo()
## R version 3.5.2 (2018-12-20)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 16.04.5 LTS
## 
## Matrix products: default
## BLAS: /usr/lib/libblas/libblas.so.3.6.0
## LAPACK: /usr/lib/lapack/liblapack.so.3.6.0
## 
## locale:
##  [1] LC_CTYPE=zh_CN.UTF-8       LC_NUMERIC=C               LC_TIME=ja_JP.UTF-8       
##  [4] LC_COLLATE=en_US.UTF-8     LC_MONETARY=ja_JP.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=ja_JP.UTF-8       LC_NAME=C                  LC_ADDRESS=C              
## [10] LC_TELEPHONE=C             LC_MEASUREMENT=ja_JP.UTF-8 LC_IDENTIFICATION=C       
## 
## attached base packages:
## [1] grid      splines   stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
##  [1] R2OpenBUGS_3.2-3.2   coda_0.19-2          BRugs_0.9-0          TailRank_3.2.1      
##  [5] oompaBase_3.2.6      codetools_0.2-16     clubSandwich_0.3.3   HLMdiag_0.3.1       
##  [9] LogisticDx_0.2       PBSmodelling_2.68.6  ROCR_1.0-7           gplots_3.0.1.1      
## [13] Hmisc_4.2-0          Formula_1.2-3        eha_2.6.0            stargazer_5.2.2     
## [17] tableone_0.9.3       lmerTest_3.0-1       ATE_0.2.0            dagitty_0.2-2       
## [21] exact2x2_1.6.3       exactci_1.3-3        ssanv_1.1            FSA_0.8.22          
## [25] lmtest_0.9-36        zoo_1.8-4            BSDA_1.2.0           lattice_0.20-38     
## [29] ggthemr_1.1.0        binomTools_1.0-1     limma_3.36.5         DescTools_0.99.27   
## [33] ggsci_2.9            ggthemes_4.0.1       car_3.0-2            carData_3.0-2       
## [37] scatterplot3d_0.3-41 mvtnorm_1.0-8        kableExtra_1.0.1     sandwich_2.5-0      
## [41] nlme_3.1-137         lme4_1.1-19          Matrix_1.2-15        psych_1.8.12        
## [45] margins_0.3.23       epiDisplay_3.5.0.1   nnet_7.3-12          MASS_7.3-51.1       
## [49] foreign_0.8-71       rgl_0.99.16          epiR_0.9-99          shiny_1.2.0         
## [53] epitools_0.5-10      flexsurv_1.1         mstate_0.2.11        cmprsk_2.2-7        
## [57] gnm_1.1-0            KMsurv_0.1-5         Epi_2.32             gridExtra_2.3       
## [61] plotly_4.8.0         haven_2.0.0          survminer_0.4.3      ggpubr_0.2          
## [65] magrittr_1.5         ggfortify_0.4.5      survival_2.43-3      forcats_0.3.0       
## [69] stringr_1.3.1        dplyr_0.7.8          purrr_0.3.0          readr_1.3.1         
## [73] tidyr_0.8.2          tibble_2.0.1         ggplot2_3.1.0        tidyverse_1.2.1     
## [77] plyr_1.8.4           kfigr_1.2            knitr_1.21           bookdown_0.9        
## [81] rmarkdown_1.11      
## 
## loaded via a namespace (and not attached):
##   [1] utf8_1.1.4              rms_5.1-3               tidyselect_0.2.5       
##   [4] htmlwidgets_1.3         pROC_1.13.0             munsell_0.5.0          
##   [7] statmod_1.4.30          miniUI_0.1.1.1          withr_2.1.2            
##  [10] colorspace_1.4-0        muhaz_1.2.6.1           Biobase_2.40.0         
##  [13] highr_0.7               oompaData_3.1.1         rstudioapi_0.9.0       
##  [16] labeling_0.3            RLRsim_3.1-3            mnormt_1.5-5           
##  [19] TH.data_1.0-10          generics_0.0.2          xfun_0.4               
##  [22] R6_2.3.0                manipulateWidget_0.10.0 bitops_1.0-6           
##  [25] assertthat_0.2.0        promises_1.0.1          scales_1.0.0           
##  [28] multcomp_1.4-8          gtable_0.2.0            MatrixModels_0.4-1     
##  [31] rlang_0.3.1             lazyeval_0.2.1          acepack_1.4.1          
##  [34] broom_0.5.1             checkmate_1.9.1         reshape2_1.4.3         
##  [37] yaml_2.2.0              prediction_0.3.6.2      abind_1.4-5            
##  [40] modelr_0.1.2            crosstalk_1.0.0         backports_1.1.3        
##  [43] httpuv_1.4.5.1          tools_3.5.2             tcltk_3.5.2            
##  [46] RColorBrewer_1.1-2      BiocGenerics_0.26.0     Rcpp_1.0.0             
##  [49] base64enc_0.1-3         BiasedUrn_1.07          rpart_4.1-13           
##  [52] deSolve_1.21            cluster_2.0.7-1         survey_3.35-1          
##  [55] data.table_1.12.0       openxlsx_4.1.0          SparseM_1.77           
##  [58] manipulate_1.0.1        hms_0.4.2               mime_0.6               
##  [61] evaluate_0.12           xtable_1.8-3            XML_3.98-1.16          
##  [64] rio_0.5.16              etm_1.0.4               readxl_1.2.0           
##  [67] compiler_3.5.2          KernSmooth_2.23-15      V8_1.5                 
##  [70] crayon_1.3.4            minqa_1.2.4             htmltools_0.3.6        
##  [73] mgcv_1.8-26             later_0.7.5             speedglm_0.3-2         
##  [76] expm_0.999-3            lubridate_1.7.4         boot_1.3-20            
##  [79] relimp_1.0-5            cli_1.0.1               quadprog_1.5-5         
##  [82] gdata_2.18.0            parallel_3.5.2          bindr_0.1.1            
##  [85] pkgconfig_2.0.2         km.ci_0.5-2             numDeriv_2016.8-1      
##  [88] xml2_1.2.0              webshot_0.5.1           rvest_0.3.2            
##  [91] digest_0.6.18           cellranger_1.1.0        survMisc_0.5.5         
##  [94] htmlTable_1.13.1        curl_3.3                quantreg_5.38          
##  [97] gtools_3.8.1            nloptr_1.2.1            jsonlite_1.6           
## [100] aod_1.3.1               bindrcpp_0.2.2          fansi_0.4.0            
## [103] qvcalc_0.9-1            viridisLite_0.3.0       pillar_1.3.1           
## [106] httr_1.4.0              glue_1.3.0.9000         zip_1.0.0              
## [109] class_7.3-15            stringi_1.2.4           polspline_1.1.13       
## [112] latticeExtra_0.6-28     caTools_1.17.1.1        e1071_1.7-0.1

Abadie, Alberto, and Guido W Imbens. 2016. “Matching on the Estimated Propensity Score.” Econometrica 84 (2): 781–807.

Armitage, Peter, Geoffrey Berry, and John Nigel Scott Matthews. 2008. Statistical Methods in Medical Research. John Wiley & Sons.

Austin, Peter C. 2011. “An Introduction to Propensity Score Methods for Reducing the Effects of Confounding in Observational Studies.” Multivariate Behavioral Research 46 (3): 399–424.

Belle, G. van, L.D. Fisher, P.J. Heagerty, and T. Lumley. 2004. Biostatistics: A Methodology for the Health Sciences. Wiley Series in Probability and Statistics. Wiley. https://books.google.co.uk/books?id=KSh8IOrLPzwC.

Bland, J Martin, and DouglasG Altman. 1986. “Statistical Methods for Assessing Agreement Between Two Methods of Clinical Measurement.” The Lancet 327 (8476): 307–10.

Cattaneo, Matias D. 2010. “Efficient Semiparametric Estimation of Multi-Valued Treatment Effects Under Ignorability.” Journal of Econometrics 155 (2): 138–54.

Cox, David R. 1972. “Models and Life-Tables Regression.” JR Stat. Soc. Ser. B 34: 187–220.

Cox, D.R. 2006. Principles of Statistical Inference. Cambridge University Press. https://books.google.co.jp/books?id=nRgtGZXi2KkC.

Cox, R. T. 1946. “Probability, Frequency and Reasonable Expectation.” American Journal of Physics 14 (1): 1–13. https://doi.org/10.1119/1.1990764.

Dawid, A Philip. 2000. “Causal Inference Without Counterfactuals.” Journal of the American Statistical Association 95 (450): 407–24.

De Finetti, Bruno. 1974. Theory of Probability: A Critical Introductory Treatment. Transl. By Antonio Machi and Adrian Smith. J. Wiley.

Diggle, Peter, and Michael G Kenward. 1994. “Informative Drop-Out in Longitudinal Data Analysis.” Applied Statistics, 49–93.

Diggle, Peter, Rana Moyeed, Barry Rowlingson, and Madeleine Thomson. 2002. “Childhood Malaria in the Gambia: A Case-Study in Model-Based Geostatistics.” Journal of the Royal Statistical Society: Series C (Applied Statistics) 51 (4): 493–506.

Fisher, R. A. 1922. “On the Mathematical Foundations of Theoretical Statistics.” Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character 222: 309–68. http://www.jstor.org/stable/91208.

Gelman, A., J.B. Carlin, H.S. Stern, D.B. Dunson, A. Vehtari, and D.B. Rubin. 2013. Bayesian Data Analysis, Third Edition. Chapman & Hall/Crc Texts in Statistical Science. Taylor & Francis. https://books.google.co.uk/books?id=ZXL6AQAAQBAJ.

Good, P.I. 2006. Permutation, Parametric, and Bootstrap Tests of Hypotheses. Springer Series in Statistics. Springer New York. https://books.google.co.uk/books?id=tQtedCBEgeAC.

Hosmer, David W, and Stanley Lemesbow. 1980. “Goodness of Fit Tests for the Multiple Logistic Regression Model.” Communications in Statistics-Theory and Methods 9 (10): 1043–69.

Johnson, Sindhu R, Brian M Feldman, Janet E Pope, and George A Tomlinson. 2009. “Shifting Our Thinking About Uncommon Disease Trials: The Case of Methotrexate in Scleroderma.” The Journal of Rheumatology 36 (2): 323–29.

Laan, Mark J van der, and Sherri Rose. 2017. “Targeted Learning in Data Science.” New York, NY: Springer International Publishing. Doi 10: 978–3.

Lesaffre, E., and A.B. Lawson. 2012. Bayesian Biostatistics. Statistics in Practice. Wiley. https://books.google.co.uk/books?id=WV7KVjEQnJMC.

Mann, Vera, De StavolaBianca L, and David A Leon. 2004. “Separating Within and Between Effects in Family Studies: An Application to the Study of Blood Pressure in Children.” Statistics in Medicine 23 (17): 2745–56.

Neyman, JS. 1923. “On the Application of Probability Theory to Agricultural Experiments. Essay on Principles. Section 9.(Tlanslated and Edited by Dm Dabrowska and Tp Speed, Statistical Science (1990), 5, 465-480).” Annals of Agricultural Sciences 10: 1–51.

Pearl, Judea. 2011. “Invited Commentary: Understanding Bias Amplification.” American Journal of Epidemiology 174 (11): 1223–7.

Pepe, Margaret S, Ziding Feng, Ying Huang, Gary Longton, Ross Prentice, Ian M Thompson, and Yingye Zheng. 2007. “Integrating the Predictiveness of a Marker with Its Performance as a Classifier.” American Journal of Epidemiology 167 (3): 362–68.

Raftery, Adrian E., and Steven Lewis. 1992. “How Many Iterations in the Gibbs Sampler?” In In Bayesian Statistics 4, 763–73. Oxford University Press.

Raudenbush, Stephen W, and Anthony S Bryk. 2002. Hierarchical Linear Models: Applications and Data Analysis Methods. Vol. 1. Sage.

Robinson, Laurence D, and Nicholas P Jewell. 1991. “Some Surprising Results About Covariate Adjustment in Logistic Regression Models.” International Statistical Review, 227–40.

Robinson, W. S. 1950. “Ecological Correlations and the Behavior of Individuals.” American Sociological Review 15 (3): 351–57. http://www.jstor.org/stable/2087176.

Rosenbaum, Paul R, and Donald B Rubin. 1983. “The Central Role of the Propensity Score in Observational Studies for Causal Effects.” Biometrika 70 (1): 41–55.

Royston, Patrick, and Mahesh KB Parmar. 2002. “Flexible Parametric Proportional-Hazards and Proportional-Odds Models for Censored Survival Data, with Application to Prognostic Modelling and Estimation of Treatment Effects.” Statistics in Medicine 21 (15): 2175–97.

Rubin, Donald B. 1974. “Estimating Causal Effects of Treatments in Randomized and Nonrandomized Studies.” Journal of Educational Psychology 66 (5): 688.

Smith, Adrian. 1995. “A Conversation with Dennis Lindley.” Statistical Science 10 (3): 305–19.

Snijders, Tom, and Roel Bosker. 1999. “Multilevel Analysis: An Introduction to Basic and Applied Multilevel Analysis.” London: Sage.

Spiegelhalter, David J, Keith R Abrams, and Jonathan P Myles. 2004. Bayesian Approaches to Clinical Trials and Health-Care Evaluation. Vol. 13. John Wiley & Sons.

Spiegelhalter, David J, Nicola G Best, Bradley P Carlin, and Van Der LindeAngelika. 2002. “Bayesian Measures of Model Complexity and Fit.” Journal of the Royal Statistical Society: Series B (Statistical Methodology) 64 (4): 583–639.

Tinmouth, Alan, Ian F Tannock, Michael Crump, George Tomlinson, Joseph Brandwein, Mark Minden, and David Sutton. 2004. “Low-Dose Prophylactic Platelet Transfusions in Recipients of an Autologous Peripheral Blood Progenitor Cell Transplant and Patients with Acute Leukemia: A Randomized Controlled Trial with a Sequential Bayesian Design.” Transfusion 44 (12): 1711–9.

Verbeke, Geert. 1997. Linear Mixed Models for Longitudinal Data. Springer.

Xie, Yihui. 2015. Dynamic Documents with R and Knitr. 2nd ed. Boca Raton, Florida: Chapman; Hall/CRC. http://yihui.name/knitr/.

———. 2018. Bookdown: Authoring Books and Technical Documents with R Markdown. https://CRAN.R-project.org/package=bookdown.