「統計解析のための線形代数」復習筆記9
特殊向量
零向量 (zero vector, null vector)
- 全部的成分均爲\(0\)的向量,我們稱之爲零向量(zero vector, null vector), 寫作: \(\underline{0}\)
- 注意與標量(scalar) \(0\) 相區分。
- 如果想要加注零向量的維度,我們可以在右下角加上 \(n\):\(\underline{0}_n\) ,意爲 \(n\) 維度的零向量。
- 不是零向量的向量又被叫做,非零向量(non-zero vector, non-null vector)。
例如: 列向量:\(\underline{0}_3=\left( \begin{array}{c} 0\\ 0\\ 0\\ \end{array} \right)\), 行向量:\(\underline{0}_3^t=(0,0,0)\)
\(1\) 向量 (vector with all elements 1)
- 當一個向量的全部成分都是數字 \(1\),我們稱這個向量爲 \(1\) 向量。 \(\underline{1}\)
- 這裏也需要注意與標量 \(1\) 相區分。
- 如果想要加注\(1\)向量的維度,我們可以在右下角加上 \(n\):\(\underline{1}_n\) ,意爲 \(n\) 維度的\(1\)向量。
例如:列向量:\(\underline{1}_4=\left( \begin{array}{c} 1\\ 1\\ 1\\ 1 \end{array} \right)\), 行向量:\(\underline{1}_4^t=(1,1,1,1)\)
第 \(i\) 基本向量
- 平時我們較少用到一個單獨的基本向量。大多情況下我們用的是由 \(n\) 個單獨向量組成的一組向量。這個類型的向量與坐標軸的關系緊密。
例如:維度爲4的第 \(1\sim4\) 基本向量:\(\underline{e}_1=\left( \begin{array}{c} 1\\ 0\\ 0\\ 0 \end{array} \right), \; \underline{e}_2=\left( \begin{array}{c} 0\\ 1\\ 0\\ 0 \end{array} \right), \; \underline{e}_3=\left( \begin{array}{c} 0\\ 0\\ 1\\ 0 \end{array} \right), \; \underline{e}_4=\left( \begin{array}{c} 0\\ 0\\ 0\\ 1 \end{array} \right)\)
單位向量 (unit vector)
例如: 因爲 \(\sqrt{(\frac{2}{3})^2+(-\frac{1}{3})^2+(\frac{2}{3})^2}=1\),所以我們稱向量 \(\underline{e}=\left( \begin{array}{c} \frac{2}{3}\\ -\frac{1}{3}\\ \frac{2}{3}\\ \end{array} \right)\) 爲單位向量。另外,\((\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}},0)^t, \; (\frac{2}{\sqrt{6}},\frac{1}{\sqrt{6}},-\frac{1}{\sqrt{6}})^t\),以及前一項的第 \(i\) 基本向量,都是單位向量。
向量的計算,與相等
向量的和與差
例如:
\(\underline{a}=\left( \begin{array}{c} a_1\\ a_2\\ \vdots\\ a_n \end{array} \right), \; \underline{b}=\left( \begin{array}{c} b_1\\ b_2\\ \vdots\\ b_n \end{array} \right)\),則有:
\(\underline{a}\pm\underline{b}=\left( \begin{array}{c} a_1\\ a_2\\ \vdots\\ a_n \end{array} \right)\pm\left( \begin{array}{c} b_1\\ b_2\\ \vdots\\ b_n \end{array} \right)=\left( \begin{array}{c} a_1 \pm b_1\\ a_2 \pm b_2\\ \vdots\\ a_n \pm b_n \end{array} \right)\) 複号同順\(\underline{a}= (a_1,a_2,\cdots,a_n), \; \underline{b} = (b_1,b_2,\cdots,b_n)\),則有:
\(\underline{a}\pm\underline{b}=(a_1,a_2,\cdots,a_n)\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;+(b_1,b_2,\cdots,b_n)\\ \;\;\;\;\;\;\;\;\;\;=(a_1 \pm b_1, a_2 \pm b_2, \cdots, a_n \pm b_n)\)
複号同順
練習
\(\underline{a}=\left( \begin{array}{c} 6\\ 7\\ 8\\ \end{array} \right),\) \(\underline{b}=\left( \begin{array}{c} 1\\ 3\\ 5\\ \end{array} \right)\) 時,\(\underline{a}+\underline{b} =\left( \begin{array}{c} 6+1\\ 7+3\\ 8+5\\ \end{array} \right)=\left( \begin{array}{c} 7\\ 10\\ 13\\ \end{array} \right)\)
\(\underline{a}-\underline{b}=\left( \begin{array}{c} 6-1\\ 7-3\\ 8-5\\ \end{array} \right)=\left( \begin{array}{c} 5\\ 4\\ 3\\ \end{array} \right)\)\(\underline{c}=(6,0,9), \underline{d}=(7,-3,2)\) 時,
\(\underline{c}+\underline{d}=(6+7,0-3,9+2)=(13,-3,11)\)
\(\underline{c}-\underline{d}=(6-7,0-(-3),9-2)=(-1,3,7)\)
向量的標量乘法(scalar multiplication)
練習
\(k=5, l=\frac{1}{9}, \underline{a}=\left( \begin{array}{c} 3\\ 2\\ -7\\ \end{array} \right)\) 時,
\(k\underline{a}=5\left( \begin{array}{c} 3\\ 2\\ -7\\ \end{array} \right)=\left( \begin{array}{c} 5\times3\\ 5\times2\\ 5\times(-7)\\ \end{array} \right)=\left( \begin{array}{c} 15\\ 10\\ -35\\ \end{array} \right)\),
\(l\underline{a}=\frac{1}{9}\left( \begin{array}{c} 3\\ 2\\ -7\\ \end{array} \right)=\left( \begin{array}{c} \frac{1}{9}\times3\\ \frac{1}{9}\times2\\ \frac{1}{9}\times(-7)\\ \end{array} \right)=\left( \begin{array}{c} \frac{1}{3}\\ \frac{2}{9}\\ -\frac{7}{9}\\ \end{array} \right)\)\(\underline{a}=\left( \begin{array}{c} 3\\ -2\\ 4\\ \end{array} \right), \underline{b}=\left( \begin{array}{c} 1\\ 1\\ -3\\ \end{array} \right), \underline{c}=\left( \begin{array}{c} 0\\ 5\\ 2\\ \end{array} \right)\) 時,
\(2\underline{a}-\underline{b}+3\underline{c}=\left( \begin{array}{c} 2\times3\\ 2\times(-2)\\ 2\times4\\ \end{array} \right)-\left( \begin{array}{c} 1\\ 1\\ -3\\ \end{array} \right)\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;+\left( \begin{array}{c} 3\times0\\ 3\times5\\ 3\times2\\ \end{array} \right)=\left( \begin{array}{c} 6-1+0\\ -4-1+15\\ 8-(-3)+6\\ \end{array} \right)=\left( \begin{array}{c} 5\\ 10\\ 17\\ \end{array} \right)\)
向量相等 equal
練習:
\(\underline{a}=\left( \begin{array}{c} a_1\\ a_2\\ a_3\\ \end{array} \right), \underline{b}=\left( \begin{array}{c} b_1\\ b_2\\ b_3\\ \end{array} \right)\) 如果相等,那麼 \(\underline{a}=\underline{b}\),
即:\(\begin{align} \left\{ \begin{array}{ll} a_1 = b_1 \\ a_2 = b_2 \\ a_3 = b_3 \end{array} \right. \end{align}\) 等價於:\(\underline{a}-\underline{b}=0\),或者
\(\begin{align} \left\{ \begin{array}{ll} a_1 - b_1 =0\\ a_2 - b_2 =0\\ a_3 - b_3 =0 \end{array} \right. \end{align}\)向量等式:\(\left( \begin{array}{c} a_{11}x_1+a_{12}x_2+a_{13}x_3\\ a_{21}x_1+a_{22}x_2+a_{23}x_3\\ a_{31}x_1+a_{32}x_2+a_{33}x_3\\ \end{array} \right)=\left( \begin{array}{c} b_1\\ b_2\\ b_3\\ \end{array} \right)\) 等價於三個等式的連立方程:
\(\begin{align} \left\{ \begin{array}{ll} a_{11}x_1+a_{12}x_2+a_{13}x_3= b_1\\ a_{21}x_1+a_{22}x_2+a_{23}x_3= b_2\\ a_{31}x_1+a_{32}x_2+a_{33}x_3= b_3 \end{array} \right. \end{align}\)求滿足 \(5\left( \begin{array}{c} a_1\\ a_2\\ a_3\\ \end{array} \right)+\left( \begin{array}{c} 2\\ 5\\ -1\\ \end{array} \right)=\left( \begin{array}{c} 12\\ 25\\ 29\\ \end{array} \right)\) 的向量 \(\underline{a}=\left( \begin{array}{c} a_1\\ a_2\\ a_3\\ \end{array} \right)\)。
解:\(5\left( \begin{array}{c} a_1\\ a_2\\ a_3\\ \end{array} \right)=\left( \begin{array}{c} 12\\ 25\\ 29\\ \end{array} \right)-\left( \begin{array}{c} 2\\ 5\\ -1\\ \end{array} \right)=\left( \begin{array}{c} 10\\ 20\\ 30\\ \end{array} \right)\)
因此,\(\underline{a}=\left( \begin{array}{c} a_1\\ a_2\\ a_3\\ \end{array} \right)=\left( \begin{array}{c} 2\\ 4\\ 6\\ \end{array} \right)\)